Big data and business intelligence applied in the gastronomic sector
Keywords:
Big data, business intelligence, restaurants and the gastronomic sectorAbstract
"Big Data" refers to the handling and analysis of data sets of great volume, speed and variety, which exceed the capabilities of traditional processing and storage tools. These data sets range from structured data, like sales records, to unstructured data, like social media posts and media files. Business Intelligence (BI): Business Intelligence is a set of technologies, processes, and tools that enable organizations to collect, analyze, and present valuable information derived from business data. The fundamental objective of BI is to facilitate informed and strategic decision-making, by providing accurate insights and analysis on the performance and operation of the organization. Abstract: The foodservice industry can benefit greatly from big data and business intelligence. By analyzing data on customer preferences, sales trends and other key metrics, businesses can gain valuable insights into their operations and make data-driven decisions. For example, by analyzing data on which dishes are ordered most frequently, companies can optimize their menus to better meet customer demand. By analyzing data on customer behavior and preferences, companies can also tailor their marketing efforts to better reach their target audience.
References
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Mollenkopf, D. A., Frankel, R., & Russo, I. (2018). Business analytics for supply chain management. Routledge. https://doi.org/10.4324/9781315175971
Töyli, J., Luoma, E., & Pirttimäki, V. (2019). Business intelligence and analytics in the food and beverage industry: Current trends and future research directions. Journal of Foodservice Business Research, 22(3), 254-276. https://doi.org/10.1080/15378020.2019.1584721
Westerman, G., Bonnet, D., & McAfee, A. (2014). Leading digital: Turning technology into business transformation. Harvard Business Press.
Chen, Y., & Xue, H. (2020). Big data in the food industry: applications and challenges. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2743-2766.
Gao, Y., Li, Z., Li, Y., & Li, Z. (2018). Research on application of big data in catering industry. Journal of Food Science and Technology, 55(1), 144-150.
Ali, S., Saleem, Y., & Ali, A. (2019). Intelligent food recommendation system based on big data analytics.
Gupta, V., & Gupta, S. (2018). Big data analytics in the restaurant industry: A review. Journal of Big Data, 5(1), 25.
Moreno, M., Barón, E., & Ramos, I. (2019). Business Intelligence Applied to the Hospitality Sector: A Case Study of a Restaurant. International Journal of Environmental Research and Public Health, 16(7), 1219.
Sánchez Duarte, J. A. ., Contreras, M. A. ., & Torres, J. A. . (2020). Caracterización geotécnica del subsuelo en el relleno sanitario regional “La Cortada”, Pamplona (Norte de Santander) a partir de datos geofísicos. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 2(36), 9–17. https://doi.org/10.24054/rcta.v2i36.15
García-Herrero, A., & Ruiz-Molina, M. E. (2019). The use of big data in the hospitality and tourism industry: a literature review. Journal of Tourism Research, 21(3), 1-15.
Girardello, M., Vissol-Gaudin, E., & Awwad, A. (2020). Business intelligence in the restaurant industry: a systematic review. International Journal of Hospitality Management, 90, 102672.
Sánchez-Cañizares, S. M., González-Fernández, C., & Caro-González, F. J. (2019). Big data and business intelligence in the restaurant sector. Current Issues in Tourism, 22(9), 1043-1058.
Wu, S., Chen, X., Zhang, Y., & Liu, Y. (2019). Exploring big data analytics capability and competitive advantage: Evidence from the restaurant industry. Information & Management, 56(2), 264-276.
Chen, Y., & Xie, J. (2017). How big data analytics helps chain restaurant operators achieve competitive advantages: A case study of a fast-food chain. International Journal of Hospitality Management, 67, 124-133.
Lee, S. A., & Yoo, S. Y. (2018). Impact of big data analytics on hotel and restaurant operations: Korean firms' perspectives. International Journal of Hospitality Management, 76, 52-64.
Nasir, N. M., Ahmad, R., Azmi, I. A. G., & Raman, M. (2018). Big data analytics in restaurants: A review. International Journal of Engineering and Technology, 7(2.10), 135-139.
Nguyen, Q., Nguyen, B., Nguyen, L., Nguyen, M., Nguyen, T., & Thai, T. (2021). Big data analytics in the food and beverage industry: A systematic review. Sustainability, 13(2), 630.
Okumus, F., Altinay, L., & Chathoth, P. (2016). Big data and hospitality: How big data analytics are changing the hospitality industry. Cornell Hospitality Report, 16(3), 6-14.
https://www.academia.edu/35353958/Big_Data_In_Hospitality_Industry_A_survey
Tsai, Chun-Wei; Lai, Ching-Feng; Chao, Hang-Chieh y otros (2015). «Big Data analytics: a survey». Journal of Big Data (vol. 2, núm. 21, págs. 1-32).
Manyika, James; Chui, Michael; Brown, Brady otros (2011). Big data: the next frontier for innovation, competition and productivity. McKinsey Global Institute.
Carrillo Gómez, J. K. ., Duran Acevedo, C. M. ., & Garcia Rico, R. O. . (2019).
Discriminación de bacterias en agua potable a través de una nariz electrónica y un equipo de extracción de volátiles. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(33), 155–165. https://doi.org/10.24054/rcta.v1i33.99
Demchenko, Yuri; Belloum, Adam (2016). EDISON Discussion Document. Data Science Competence Framework (CF-DS): Approach and First Working Version. <http://edison-project.eu/sites/edison-project.eu/files/attached_files/node-29/edison-cf-ds-draft-cc-v06.pdf>.
Hu, Han; Wen, Yonggang; Chua, Tag-Seng y otros (2014). «Toward Scalable Systems for Big Data Analytics». IEEE Access (núm. 2, págs. 652-687).
Yang, K., Zhang, W., & Xia, X. (2016). Data mining for personalized menu recommendation in restaurant. Future Generation Computer Systems, 65, 1-8.
D. Xu et al. (2019). Restaurant Revenue Management in the Era of Big Data
Balbis Morejón, M., García Reina, F. ., Cabello Eras, J. J., & Sousa Santos, V. (2019). Caracterización energética del funcionamiento de un equipo de aire acondicionado en un local dado. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 2(34), 71–76. https://doi.org/10.24054/rcta.v2i34.65
M. Sigala et al. (2020). Big Data Analytics for Smart Food Tourism: Trends, Opportunities, and Challenges
Roger Peries. Octubre 28, (2020). Marketing-gastronomico/big-data-en-restaurantes-hacer-crecer-tú-negocio.
Rojas Puentes, M. D. P., Parada, C. J., & Leal Pabón, J. L. (2022). Estructuras desglosadas de trabajo (EDT) en la gestión de alcance de proyectos de desarrollo de software. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(39), 51–58. https://doi.org/10.24054/rcta.v1i39.1375