Mejoras en un sistema fotovoltaico utilizando técnicas inteligentes que alimenta un inversor de frecuencia en bombas electrosumergibles

Autores/as

  • Luis E Neira Ropero Universidad de Pamplona

Palabras clave:

Sistema fotovoltaico, energía solar, bombas electrosumergibles

Resumen

En el trabajo se tiene en cuenta la distribución espacial y temporal del potencial energético solar, se identifica las zonas estratégicas adecuada para la utilización de la energía solar, sen presentan diferentes técnicas inteligentes para optimizar el sistema fotovoltaico.

Citas

Aashoor, F. A. O., & Robinson, F. V. P. (2014). Maximum Power Point Tracking of Photovoltaic Water Pumping System Using Artificial Neural Based Controller. The 3rd Renewable Power Generation Conference (RPG), 1–6. https://doi.org/10.1049/cp.2014.0884.

AB Niño., (2018), Micro turbina Peltón, una solución real de energía para zonas no interconectadas (ZNI). Revista Colombiana de Tecnologías de Avanzada, ISSN: 1692-7257.

Aliyu, M., Hassan, G., Said, S. A., Siddiqui, M. U., Alawami, A. T., & Elamin, I. M. (2018). A review of solar-powered water pumping systems. Renewable and Sustainable Energy Reviews, 87(March 2017), 61–76. https://doi.org/10.1016/j.rser.2018.02.010.

Andoulssi, R., Draou, A., Jerbi, H., Alghonamy, A., & Khiari, B. (2013). Non linear control of a photovoltaic water pumping system. Energy Procedia, 42, 328–336. https://doi.org/10.1016/j.egypro.2013.11.033.

Autogeneración a pequeña escala y generación distribuida.

Benghanem, M., Daffallah, K. O., Joraid, A. A., Alamri, S. N., & Jaber, A. (2013). Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia. Energy Conversion and Management, 65, 50–56. https://doi.org/10.1016/j.enconman.2012.08.013.

Cepeda, J., & Sierra, A. (2016). Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales soluciones, 10.

Contreras, W., Galban, M. G., & Sepúlveda, S. B. (2018). Análisis estadístico de la radiación solar en la ciudad de Cúcuta . Entre Ciencia e Ingeniería . scieloco.

CREG 026. (2018). Documento CREG 026. Análisis de comentarios a la resolución CREG 121 de 2017.

CREG 066. (2017). Documento CREG 066. Autogeneración a Pequeña escala y generación distribuida. C. CREG No. 030 (2018). Colombia: Diario Oficial No. 50522.

CSH Tolosa, BC Eugenio., (2017), Desarrollo de libros electrónicos: “taller pedagógico”. Revista Colombiana de Tecnologías de Avanzada ISSN: 1692-7257.

Elimination for Multilevel Converters. IEEE Transactions on Power Electronics, 32(2), 1579–1590. https://doi.org/10.1109/TPEL.2016.2548080.

Enrique, J. M. (2011). Diseño, modelado y optimización de sistemas de seguimiento del punto de máxima potencia de generadores fotovoltaicos mediante convertidores CC/CC.

Gupta, M. K., & Jain, R. (2013). Mppt simulation with dc submersible solar pump using output sensing direct control method and cuk converter. International Journal of Renewable Energy Research, 3(1), 186–191. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881042574&partnerID=40&md5=dd295b053a192a0aef7f362be6213e37.

International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 10(1), 137–152. Retrieved from https://waset.org/Publications/a-review-on-impacts-of-grid-connected- pv-system-on-distribution-networks/10003919.

J Pérez, J Castro., (2018), LRS1: Un robot social de bajo costo para la asignatura “Programación 1”. Revista Colombiana de Tecnologías de Avanzada, ISSN: 1692-7257.

Jamil, M. (2012). SPV based water pumping system for an academic institution. American Journal of Electrical Power and Energy Systems, 1(1), 1.

Kappali, M., Uday Kumar, R. Y., & Sheelavant, V. R. (2013). Harnessing Maximum Power from Solar PV Panel for Water Pumping Application (pp. 236–241). https://doi.org/10.1007/978-3-642-35864-7_33.

Malla, S. G., Bhende, C. N., & Mishra, S. (2011). Photovoltaic based water pumping system. In 2011 International Conference on Energy, Automation and Signal (pp. 1–4). IEEE. https://doi.org/10.1109/ICEAS.2011.6147148.

Meyer, E., Van Dyk, E. E., (.

Mishra, A. K., & Singh, B. (2018). Design of solar-powered agriculture pump using new configuration of dual-output buck–boost converter. IET Renewable Power Generation, 12(14), 1640–1650. https://doi.org/10.1049/iet-rpg.2018.5258.

Nath, S. R., & Mandal, R. (2017). Some studies on performance analysis of two different laboratory scale solar photovoltaic water pumping in irrigation systems. International Conference on 21st Century Energy Needs - Materials, Systems and Applications, ICTFCEN 2016, (March 2015), 0–3. https://doi.org/10.1109/ICTFCEN.2016.8052739.

Ordóñez Plata, G., Duarte, C., & Petit Suárez, J. (2018). Método y sistema de irrigación inteligente de paneles fotovoltaicos integrados con techos verdes. Colombia. Retrieved from WO2017187420A1.

Parvathy S., & Vivek A. (2015). A photovoltaic water pumping system with high efficiency and high lifetime. In 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy) (pp. 489–493). IEEE. https://doi.org/10.1109/TAPENERGY.2015.7229668.

Pavón, L. D., Caicedo, E., Rodríguez, J. L., Pardo, A. G. (2019). Power Conditioner for a PV Systems in The Alternating Current.

Rohit, K. B., Karve, G. M., & Khatri. (2013). Solar Water Pumping system. International Journal of Emerging Technology and Advanced Engineering. https://doi.org/10.1016/0038-092X(78)90007-5.

Salamanca, J. E., (2012). Celdas fotovoltaicas de alta eficiencia y sistema de paneles solares del cubesat Colombia 1.

Shabaan, S., Abu El-Sebah, M. I., & Bekhit, P. (2018). Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system. Journal of Electrical Systems and Information Technology, 5(1), 11–22. https://doi.org/10.1016/j.jesit.2018.02.002.

Singh, B., & Kumar, R. (2016). Solar PV array fed brushless DC motor driven water pump. 2016 IEEE 6th International Conference on Power Systems, ICPS 2016, 0–4. https://doi.org/10.1109/ICPES.2016.7584057.

Subashini, M., & Ramaswamy, M. (2016). A novel design of charge controller for a standalone solar photovoltaic system. 2016 3rd International Conference on Electrical Energy Systems, ICEES 2016, 237–243. https://doi.org/10.1109/ICEES.2016.7510647.

T Velásquez, E Espinel, G Guerrero (2016). Estrategias pedagógicas en el aula de clase. Revista Colombiana de Tecnologías de Avanzada, ISSN: 1692-7257.

Tafti, H. D., Maswood, A. I., Konstantinou, G., Pou, J., & Acuna, P. (2018). Active/reactive power control of photovoltaic grid-tied inverters with peak current limitation and zero active power oscillation during unbalanced voltage sags. IET Power Electronics, 11(6), 1066–1073. https://doi.org/10.1049/iet- pel.2017.0210.

Tobnaghi, D. M. (2016). A Review on Impacts of Grid-Connected PV System on Distribution Networks.

Villamizar, K. (2019, January 29). Norte de Santander, a mitad de camino hacia la innovación. La Opinion. Retrieved from https://www.laopinion.com.co/economia/norte-de-santander-mitad-de-camino-hacia- la-innovacion-170322#OP.

Villan Bustamante, D. (2018, September 6). El primer edificio en Cúcuta que funciona con energía solar. La Opinion. Retrieved from https://www.laopinion.com.co/economia/el-primer-edificio-en-cucuta-que- funciona-con-energia-solar-161622#OP.

Yan, R., Roediger, S., & Saha, T. K. (2011). Impact of photovoltaic power fluctuations by moving clouds on network voltage: A case study of an urban network. In AUPEC 2011 (pp. 1–6).

Yang, K., Zhang, Q., Zhang, J., Yuan, R., Guan, Q., Yu, W., & Wang, J. (2017). Unified Selective Harmonic.

Yang, Y., Zhou, K., & Blaabjerg, F. (2016). Current Harmonics From Single-Phase Grid-Connected Inverters—Examination and Suppression. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 221–233. https://doi.org/10.1109/JESTPE.2015.2504845.

Zahab, E. E. A., Zaki, A. M., & El-sotouhy, M. M. (2016). Design and control of a standalone PV water pumping system. Journal of Electrical Systems and Information Technology, 4(2), 322–337. https://doi.org/10.1016/j.jesit.2016.03.003.

Zhang, X., Zhao, T., Mao, W., Tan, D., & Chang, L. (2018). Multilevel Inverters for Grid-Connected Photovoltaic Applications: Examining Emerging Trends. IEEE Power Electronics Magazine, 5(4), 32– 41. https://doi.org/10.1109/MPEL.2018.2874509.

Zhang, X., Zhao, T., Mao, W., Tan, D., & Chang, L. (2018). Multilevel Inverters for Grid-Connected Photovoltaic Applications: Examining Emerging Trends. IEEE Power Electronics Magazine, 5(4), 32– 41. https://doi.org/10.1109/MPEL.2018.2874509.

Número

Sección

Articulos